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The photon-absorption edge in a weakly interacting one-dimensional electron gas is studied,
treating backscattering of conduction electrons from the core hole exactly. Close to threshold, there
is a power-law singularity in the absorption, I(€) «x €%, with a = % + 84/ — 8% /27, where

6+ is the forward-scattering phase shift of the core hole.

In contrast to previous theories, «a is

finite (and universal) in the limit of weak core-hole potential. In the case of weak backscattering
U(2kF), the exponent in the power-law dependence of absorption on energy crosses over to a value
a =64 /7 — 82 /272 above an energy scale €* ~ [U(2kr)]'/7, where 7 is a dimensionless measure of

the electron-electron interactions.

The understanding of the nature of the singularities in
the x-ray-absorption edge in metals has played an impor-
tant role in modern condensed matter physics.*> With
the advent of new microelectronics technology it has be-
come possible to study the related Fermi-edge singular-
ities in one-dimensional (1D) quantum wires.® Since in
one dimension electron-electron interactions destroy the
Fermi surface, it is an important problem to understand
how the combined effects of reduced dimensionality and
interactions affect the qualitative nature of the edge sin-
gularities.

In 3D metals, the power-law singularity in the absorp-
tion edge is determined by the famous relation

19 (2) e, 0

with the exponent a given by

a=28/m— Y (&/m)%. (2)
l

Here € = A(w — wyy) is the energy of a photoelectron
counted from the Fermi level, w;, is the absorption
threshold frequency, Dy is the conduction electron band-
width, and §; are the scattering phase shifts associated
with the core hole seen by electrons at the Fermi energy.
It is assumed that [ = 0 is the dominant channel. In
a noninteracting 1D electron gas, there are two phase
shifts, . and é,, corresponding to wave functions which
are even and odd about the origin. It is more convenient
to introduce linear combinations of these phase shifts,
0+ = 0. £ 6,. In this representation, the result (2) has
the form
2 2

a=6++6,_5++6_. 3)

272

7l'

In the Born approximation, the new phase shifts are re-
lated to two different Fourier components of the core-hole
potential U(q),
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6+:M’ 5_~=U(2kF), (4)
hvg hvp
where vp and kp are the Fermi velocity and the wave
vector.

Recently, a number of authors®® have addressed the
effect of electron-electron interactions in 1D metal in a
simplified model with U(2kr) = §_ = 0. They concluded
that the power-law structure survives with an exponent
modified by the interactions. However, o remains small
if the scattering potential U(0) is weak.

In this paper we show that even a small 2k scatter-
ing changes this result qualitatively. In particular, the
exponent in En. (1) always becomes of order of 1 in the
immediate vicinity of the threshold energy. The growth
of o at low energies is caused by the interaction-induced
renormalizations®7” of 2k scattering that increase the ef-
fective value of U(2kF) and, correspondingly, of §_. The
quantitative behavior of §_(¢€) can be found in the case of
weakly interacting electrons, when it is possible to define
the transmission amplitude ¢ and to relate it to the phase
shifts by a standard scattering theory formula,

t = e+ cosd_. (5)

In the limit of weak interaction, the renormalized trans-
mission amplitude can be found® at any energy,

to(G/DQ)‘Y
VIrol? + [to* (/Do)

where |ro|> = 1 — [to|? is the bare reflection coefficient,
and v = [V(0) — V(2kF)]/27hvp is determined by the
Fourier components V(g) of the electron-electron inter-
action potential. Comparing (5) with (6) we conclude
that §; does not depend on energy and corresponds to
the unrenormalized value of the transmission amplitude
to. In agreement with Ref. 7, transmission amplitude
vanishes at low energies which implies saturation of the
other phase shift at _ = 7/2. Consequently, according

t(e) = (6)
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to Eq. (3), very close to the threshold the exponent « is
given by
3 6, &
= -+ = - . 7
*T 8 + m 2m2 (7)

Thus, a near the threshold differs from the results of
works*® by 3/8. The region of energies where Eq. (7)
is valid depends on U(2kp). For a weak backscattering,
there is a clear crossover between the values given by (7)
and the results of Refs. 4 and 5, as shown in Fig. 1. This
crossover occurs at the energy scale ¢* where the phase
§_ becomes of the order of 1. Using Egs. (5) and (6), we
find
1/~

~ DO

U(2kr) M

ﬁ’UF

To

e ~ D
%%

(8)

The simple picture presented above has two drawbacks.
It uses Egs. (1) and (5) that are valid, strictly speak-
ing, for noninteracting electrons only. Besides, Eq. (2)
assumes energy-independent phase shifts.

In order to establish the above results, it is necessary
to develop an approach that treats both the renormal-
izations of 6_ and the absorption intensity I(e) in a
unified manner. For noninteracting electrons, a num-
ber of techniques have been used to this end. Nozieres
and de Dominicis? summed the perturbation series in
the strength of the potential. Ohtaka and Tanabe used
a technique based on Slater determinants.® Schotte and
Schotte employed a bosonization technique.!® The latter
approach is the most natural to generalize when includ-
ing electron-electron interactions.

Bosonization has proved a very useful technique for
studying the interacting 1D electron gas, or Luttinger
liquid.!! The advantage of bosonization is that in the ab-
sence of backscattering, the low energy behavior is deter-
mined by a free field theory, which describes the collective

10

I(e)
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FIG. 1. A log-log plot showing the crossover in the x-ray
response obtained by numerically integrating Eq. (21). We
have set v = 0.6, which is the correct order of magnitude
for a GaAs quantum wire. The core-hole potential is char-
acterized by §4 = 0.1 and §_(0) = 0.1. The dashed lines
indicate the asymptotic power laws for ¢ < €* and € > €",
with €*/D ~ 0.02.
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density fluctuations, and exact results for the behavior of
correlation functions may be simply obtained. Unfortu-
nately, backscattering of electrons will introduce a non-
linear term into the theory which cannot be treated ex-
actly. Schotte and Schotte employed a different bosoniza-
tion scheme, however, which allowed them to treat ex-
actly the scattering of 3D noninteracting electrons on a
core hole.!® They applied the bosonization technique to
each angular momentum channel independently. We use
a similar approach for our 1D problem that allows us to
treat the backscattering potential exactly.

Here we briefly outline this nonstandard bosonization
transformation. For k > 0, instead of usual left (L) and
right (R) movers described by wave functions e*** we
introduce even (e) and odd (o) channels corresponding
to coskz and sin kx, respectively. The electron annihi-
lation operators corresponding to these states are then
related by ¥r r(k) = [te(k) £ i%o(k)]/v/2. We then de-
fine bosonic fields ¢, o(Z) such that

Veo(®) = Y 9] o (k + q)ve,o(k). (9)

k,q

(Note that the coordinate Z should not be confused with
the physical coordinate z, since the transformation to
even and odd wave functions mixes z and —z.) We may
then, as usual, express the electron creation operator as
die—ikE

Ye,o(k explide,o(Z)], (10)

1 oo
- L
V21N J oo
where n = hvp/Dg is the short distance cutoff. When
expressed in terms of these variables, the Hamiltonian
for noninteracting electrons, including backscattering, is
quadratic in ¢, ,. We write

H=H0+Hbarrier7 (11)

where Ho = D .50 hvpk[Yive + ¥iv,] is the kinetic
energy expressed in the (e,o0) basis, and Hparrier =
U(2kp) (Wi or+9kr) +U(0)(¥hor + whvr) is the po-
tential due to scattering off of the core hole (operators
Y1 and YR are taken at z = 0). Expressed in terms of
the bosonic operators, these may be written

Ho= "% [~ a2 {(V6,@F +IVo-@P} (12
and
Hunsrier = "8 [5, V(2 = 0) +6_V6_ (5 =0)], (13)

where 04 are related to U(q) by Eq. (4), and we have
defined ¢+ = ¢ + ¢,. Since this Hamiltonian is at most
quadratic, it is a simple matter to compute the x-ray
response exactly.

We now add an electron-electron interaction to the
Hamiltonian (11), and in the long-wavelength limit write
H;,; = Vfdsz(a:)pR(:c), where the right and left mov-
ing electron densities are pr g(z) = T/’},,R(w)lﬁL,R(l‘)'lz
Expressed in terms of the boson fields, this takes the
form
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Hin, = V/°° dz [—1-6¢+(i)6¢+(“3~7)

oo 1672
—471_17772 sin¢_(5:)sin¢_(—i)}. (14)

Note that the Hamiltonian Hg + H;n + Hparrier decouples
into independent ¢, and ¢_ channels. When §_ = 0, the
effect of the barrier is contained only in the part depen-
dent on ¢, which is quadratic. Thus, as shown in Refs.
4 and 5, when §_ = 0 an exact solution is possible for
arbitrary interaction strength. When d_ is finite, the in-
teraction term containing nonquadratic pieces makes a
general solution difficult. Nonetheless, it is straightfor-
ward to expand perturbatively in v = V/2nAvp, in order
to show that §_ changes drastically the x-ray-absorption
edge singularity.

The x-ray response may be determined by computing
I(€) o Re [;° dte’t/" A(t) with

At) = <1/)e($ — 0,¢) exp {—% /0 t Hba,,ie,(t’)dt'}

x¢§(m=0,0)>. (15)

The averaging in Eq. (15) is performed over the ground
state of the Hamiltonian Hy + H;,:. To the lowest order
in «y we find the correction to I(e),

B (e

(16)

with ag given by (3). For v = 0 we recover the exact re-
sult for noninteracting electrons.!»:1° The first correction
in v diverges logarithmically as ¢ — 0.12

In logarithmic problems, a renormalization group anal-
ysis often allows one to extend the results of perturbation
theory. Here we shall employ the usual program for the
renormalization group. In (15) we thus divide ¢4 into
slow and fast components ¢+ = ¢5 + @3, where ¢~ is
composed of Fourier components with e *D < q < D.
Upon integrating out ¢~ and rescaling space and time
by a factor ef, we arrive at an equivalent problem with
renormalized parameters. This procedure can easily be
carried out perturbatively in v, and we find that the low-
est order renormalization group flow equation is

dé_ v .
=3 sin26_. (17)

The related evolution of A(t) is given by

e (R ) ()

It may be observed that the perturbation theory re-
sult (16) satisfies this scaling relation. Equation (17)
has been obtained earlier, in a study of the transmission
coefficient of a barrier in a weakly interacting electron
gas.® It shows that for an arbitrarily small backscatter-
ing, phase shifts will grow and at low energy scales phase

shifts will saturate at 7 /2. For §_ near 0 or w/2, Eq. (17)
is equivalent to the weak interaction limit of the renor-
malization group flow equations derived for the weak and
strong barrier limits in Ref. 7.

Equation (17) may simply be solved for the phase shift
at any energy scale,

§_(£) = tan~![e"* tan §_(0)]. (19)

We may obtain an expression for the correlation function
A(t) by integrating (18) down to an energy scale of order
De~* ~ h/t,

B 16, 2 Dot

_%/Olnm/h (6_—77@ - 1)2d£]. (20)

In the weak interaction limit in which we are working, the
Fourier transform of (20) may be found by noting that
é_ is a very slowly varying function of £, so we obtain

o= (2) 157

X exp [—%foln? (# -1)2dz] L)

Here 6_(¥¢) is given by Eq. (19). At relatively large ener-
gies, one should substitute into (21) the unrenormalized
backscattering phase shift §_(0). If §_(0) is small, then
I(€) becomes a power law with the exponent (3). In the
limit of small energies £ — oo the phase shift §_ = 7/2,
and (21) reduces to a pu.wer-law singularity with an ex-
ponent given by Eq. (7). As it follows from Egs. (19) and
(21) there is a clear crossover between these two regimes,
if the initial value of phase §_ is small. The crossover
occurs at energy €* ~ Do[d_(0)]'/7, in accordance with
(8).

Since the Hamiltonian (14) is decoupled into indepen-
dent + and — channels, it is clear that the Fermi-edge
exponent should be the sum of two independent terms de-
termined by §; and §_, even when the interactions are
not weak. The §; term was computed in Refs. 4 and 5.
Our solution of this problem in the weak interaction limit
gives us strong indication of how the other term behaves
in the intermediate interaction regime. In this regime, it
is known that in a Luttinger liquid with repulsive interac-
tions the renormalized backscattering grows as U(2kp)
(Do/€)'~9, where g = (1 + 2v)~/2.7 Hence there is a
crossover between the limits of weak and strong backscat-
tering that occurs at e* ~ Do[U(2kr)/fvp]t/(1=9). Re-
cently, Prokof’ev!3 has computed the edge exponent at
the strong backscattering fixed point (e — 0). His result
agrees with ours in the weak interaction limit. This is
compelling evidence that the crossover physics described
in Fig. 1 remains valid in the intermediate interaction
regime (see also Ref. 14).

So far we considered the model of spinless electrons.
An advantage of the perturbation theory in « used here is
that it allows a straightforward generalization to the case
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of spin-% electrons. The energy dependence of the trans-
mission coefficient (6), and consequently §_, is modified.®
However the qualitative picture of the x-ray response be-
havior remains the same. As in the spinless case, §_
renormalizes from its initial value to m/2, which leads to
a crossover of the power-law exponent a. The limiting
values of & may be found from Eq. (2). At large energies
it gives a = (64 +0_)/m — (62 + 62)/n?, while near the
threshold one obtains o = 1/4 + 6 /m — 6% /=2,

In conclusion, we studied the x-ray edge singularity for
the weakly interacting 1D electron gas. We have shown
that even a weak backscattering on the core hole affects
this singularity drastically. It leads to the crossover in

the dependence of the absorption-edge exponent on en-
ergy, as shown in Fig. 1. In the case of a weak core-hole
potential, the x-ray exponent near the threshold equals
3/8 for spinless fermions and 1/4 for spin-1 electrons.
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